Advertisement

Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model

Published:February 03, 2014DOI:https://doi.org/10.1016/j.jpedsurg.2014.01.013

      Abstract

      Purpose

      Recent experimental work suggests the therapeutic role of mesenchymal stromal cells (MSCs) during lung morphogenesis. The purpose of this study was to investigate the potential paracrine effects of amniotic fluid-derived MSCs (AF-MSCs) on fetal lung growth in a nitrofen explant model.

      Methods

      Pregnant Sprague–Dawley dams were gavage fed nitrofen on gestational day 9.5 (E9.5). E14.5 lung explants were subsequently harvested and cultured ex vivo for three days on filter membranes in conditioned media from rat AF-MSCs isolated from control (AF-Ctr) or nitrofen-exposed (AF-Nitro) dams. The lungs were analyzed morphometrically and by quantitative gene expression.

      Results

      Although there were no significant differences in total lung surface area among hypoplastic lungs, there were significant increases in terminal budding among E14.5+3 nitrofen explants exposed to AF-Ctr compared to explants exposed to medium alone (58.8±8.4 vs. 39.0±10.0 terminal buds, respectively; p<0.05). In contrast, lungs cultured in AF-Nitro medium failed to augment terminal budding. Nitrofen explants exposed to AF-Ctr showed significant upregulation of surfactant protein C to levels observed in normal fetal lungs.

      Conclusions

      AF-MSCs can augment branching morphogenesis and lung epithelial maturation in a fetal explant model of pulmonary hypoplasia. Cell therapy using donor-derived AF-MSCs may represent a novel strategy for the treatment of fetal congenital diaphragmatic hernia.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Pediatric Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wung J.T.
        • Sahni R.
        • Moffitt S.T.
        • et al.
        Congenital diaphragmatic hernia: survival treated with very delayed surgery, spontaneous respiration, and no chest tube.
        J Pediatr Surg. 1995; 30: 406-409
      1. Does extracorporeal membrane oxygenation improve survival in neonates with congenital diaphragmatic hernia? The Congenital Diaphragmatic Hernia Study Group.
        J Pediatr Surg. 1999; 34 ([discussion 4–5]): 720-724
        • Lally K.P.
        • Lally P.A.
        • Lasky R.E.
        • et al.
        Defect size determines survival in infants with congenital diaphragmatic hernia.
        Pediatrics. 2007; 120: e651-e657
        • Harrison M.R.
        • Keller R.L.
        • Hawgood S.B.
        • et al.
        A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia.
        N Engl J Med. 2003; 349: 1916-1924
        • Muratore C.S.
        • Kharasch V.
        • Lund D.P.
        • et al.
        Pulmonary morbidity in 100 survivors of congenital diaphragmatic hernia monitored in a multidisciplinary clinic.
        J Pediatr Surg. 2001; 36: 133-140
        • Angelini A.
        • Castellani C.
        • Ravara B.
        • et al.
        Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process.
        J Heart Lung Transplant. 2011; 30: 1281-1293
        • Aslam M.
        • Baveja R.
        • Liang O.D.
        • et al.
        Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease.
        Am J Respir Crit Care Med. 2009; 180: 1122-1130
        • Grisafi D.
        • Pozzobon M.
        • Dedja A.
        • et al.
        Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia.
        Pediatr Pulmonol. 2013; 48: 1070-1080
        • Popova A.P.
        • Bozyk P.D.
        • Bentley J.K.
        • et al.
        Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia.
        Pediatrics. 2010; 126: e1127-e1133
        • van Haaften T.
        • Byrne R.
        • Bonnet S.
        • et al.
        Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats.
        Am J Respir Crit Care Med. 2009; 180: 1131-1142
        • Pierro M.
        • Ionescu L.
        • Montemurro T.
        • et al.
        Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia.
        Thorax. 2013; 68: 475-484
        • Tropea K.A.
        • Leder E.
        • Aslam M.
        • et al.
        Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia.
        Am J Physiol Lung Cell Mol Physiol. 2012; 302: L829-L837
        • Kunisaki S.M.
        • Jennings R.W.
        • Fauza D.O.
        Fetal cartilage engineering from amniotic mesenchymal progenitor cells.
        Stem Cells Dev. 2006; 15: 245-253
        • Kunisaki S.M.
        Congenital anomalies: treatment options based on amniotic fluid-derived stem cells.
        Organogenesis. 2012; 8: 89-95
        • Pederiva F.
        • Ghionzoli M.
        • Pierro A.
        • et al.
        Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects.
        Cell transplantation. 2013; 22: 1683-1694
        • In 't Anker P.S.
        • Scherjon S.A.
        • Kleijburg-van der Keur C.
        • et al.
        Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation.
        Blood. 2003; 102: 1548-1549
        • Tsai M.S.
        • Lee J.L.
        • Chang Y.J.
        • et al.
        Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol.
        Hum Reprod. 2004; 19: 1450-1456
        • De Coppi P.
        • Bartsch Jr., G.
        • Siddiqui M.M.
        • et al.
        Isolation of amniotic stem cell lines with potential for therapy.
        Nat Biotechnol. 2007; 25: 100-106
        • Nazarov I.
        • Lee J.W.
        • Soupene E.
        • et al.
        Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential.
        Stem cells translational medicine. 2012; 1: 359-372
        • Underwood M.A.
        • Gilbert W.M.
        • Sherman M.P.
        Amniotic fluid: not just fetal urine anymore.
        J Perinatol. 2005; 25: 341-348
        • Bai J.
        • Wang Y.
        • Liu L.
        • et al.
        Human amniotic fluid-derived c-kit(+) and c-kit (−) stem cells: growth characteristics and some differentiation potential capacities comparison.
        Cytotechnology. 2012; 64: 577-589
        • Kunisaki S.M.
        • Armant M.
        • Kao G.S.
        • et al.
        Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials.
        J Pediatr Surg. 2007; 42 ([discussion 9–80]): 974-979
        • Pappa K.I.
        • Anagnou N.P.
        Novel sources of fetal stem cells: where do they fit on the developmental continuum?.
        Regen Med. 2009; 4: 423-433
        • Yoon B.S.
        • Moon J.H.
        • Jun E.K.
        • et al.
        Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells.
        Stem Cells Dev. 2010; 19: 887-902
        • Ohmichi H.
        • Koshimizu U.
        • Matsumoto K.
        • et al.
        Hepatocyte growth factor (HGF) acts as a mesenchyme-derived morphogenic factor during fetal lung development.
        Development. 1998; 125: 1315-1324
        • Costlow R.D.
        • Manson J.M.
        The heart and diaphragm: target organs in the neonatal death induced by nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether).
        Toxicology. 1981; 20: 209-227
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Sarugaser R.
        • Hanoun L.
        • Keating A.
        • et al.
        Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy.
        PLoS One. 2009; 4: e6498
        • Bartsch G.
        • Yoo J.J.
        • De Coppi P.
        • et al.
        Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors.
        Stem Cells Dev. 2005; 14: 337-348
        • Itakura A.
        • Kurauchi O.
        • Morikawa S.
        • et al.
        Human amniotic fluid motogenic activity for fetal alveolar type II cells by way of hepatocyte growth factor.
        Obstet Gynecol. 1997; 89: 729-733
        • Fauza D.
        Amniotic fluid and placental stem cells.
        Best Pract Res Clin Obstet Gynaecol. 2004; 18: 877-891
        • Greenough A.
        Prenatal factors in the development of chronic lung disease.
        Semin Fetal Neonatal Med. 2009; 14: 339-344
        • Hershenson M.B.
        • Brouillette R.T.
        • Klemka L.
        • et al.
        Respiratory insufficiency in newborns with abdominal wall defects.
        J Pediatr Surg. 1985; 20: 348-353
        • Kotecha S.
        Lung growth: implications for the newborn infant.
        Arch Dis Child Fetal Neonatal ED. 2000; 82: F69-F74
        • Chen C.M.
        • Chou H.C.
        • Wang L.F.
        • et al.
        Retinoic acid fails to reverse oligohydramnios-induced pulmonary hypoplasia in fetal rats.
        Pediatr Res. 2007; 62: 553-558
        • De Carolis M.P.
        • Romagnoli C.
        • De Santis M.
        • et al.
        Is there significant improvement in neonatal outcome after treating pPROM mothers with amnio-infusion?.
        Biol Neonate. 2004; 86: 222-229
        • Guillot P.V.
        • Gotherstrom C.
        • Chan J.
        • et al.
        Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC.
        Stem Cells. 2007; 25: 646-654
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        • Kim J.
        • Lee Y.
        • Kim H.
        • et al.
        Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells.
        Cell Prolif. 2007; 40: 75-90
        • Roubelakis M.G.
        • Pappa K.I.
        • Bitsika V.
        • et al.
        Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells.
        Stem Cells Dev. 2007; 16: 931-952
        • Maguire C.T.
        • Demarest B.L.
        • Hill J.T.
        • et al.
        Genome-wide analysis reveals the unique stem cell identity of human amniocytes.
        PLoS One. 2013; 8 (1-16): e53372
        • Roubelakis M.G.
        • Tsaknakis G.
        • Pappa K.I.
        • et al.
        Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization.
        PLoS One. 2013; 8 (1-15): e54747
        • Shiratori M.
        • Oshika E.
        • Ung L.P.
        • et al.
        Keratinocyte growth factor and embryonic rat lung morphogenesis.
        Am J Respir Cell Mol Biol. 1996; 15: 328-338
        • Gauldie J.
        • Galt T.
        • Bonniaud P.
        • et al.
        Transfer of the active form of transforming growth factor-beta 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia.
        Am J Pathol. 2003; 163: 2575-2584
        • Popova A.P.
        • Bozyk P.D.
        • Goldsmith A.M.
        • et al.
        Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells.
        Am J Physiol Lung Cell Mol Physiol. 2010; 298: L735-L743
        • Kitagawa M.
        • Hislop A.
        • Boyden E.A.
        • et al.
        Lung hypoplasia in congenital diaphragmatic hernia. A quantitative study of airway, artery, and alveolar development.
        Br J Surg. 1971; 58: 342-346
        • Acosta J.M.
        • Thebaud B.
        • Castillo C.
        • et al.
        Novel mechanisms in murine nitrofen-induced pulmonary hypoplasia: FGF-10 rescue in culture.
        Am J Physiol Lung Cell Mol Physiol. 2001; 281: L250-L257
        • Lee C.
        • Mitsialis S.A.
        • Aslam M.
        • et al.
        Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension.
        Circulation. 2012; 126: 2601-2611
        • Jesudason E.C.
        • Connell M.G.
        • Fernig D.G.
        • et al.
        In vitro effects of growth factors on lung hypoplasia in a model of congenital diaphragmatic hernia.
        J Pediatr Surg. 2000; 35: 914-922
        • Panos R.J.
        • Rubin J.S.
        • Csaky K.G.
        • et al.
        Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.
        J Clin Invest. 1993; 92: 969-977
        • Deimling J.
        • Thompson K.
        • Tseu I.
        • et al.
        Mesenchymal maintenance of distal epithelial cell phenotype during late fetal lung development.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: L725-L741
        • Hennrick K.T.
        • Keeton A.G.
        • Nanua S.
        • et al.
        Lung cells from neonates show a mesenchymal stem cell phenotype.
        Am J Respir Crit Care Med. 2007; 175: 1158-1164
        • Bozyk P.D.
        • Popova A.P.
        • Bentley J.K.
        • et al.
        Mesenchymal stromal cells from neonatal tracheal aspirates demonstrate a pattern of lung-specific gene expression.
        Stem Cells Dev. 2011; 20: 1997-2007
        • Guilbert T.W.
        • Gebb S.A.
        • Shannon J.M.
        Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development.
        Am J Physiol Lung Cell Mol Physiol. 2000; 279: L1159-L1171
        • O'Toole S.J.
        • Sharma A.
        • Karamanoukian H.L.
        • et al.
        Tracheal ligation does not correct the surfactant deficiency associated with congenital diaphragmatic hernia.
        J Pediatr Surg. 1996; 31: 546-550
        • van Loenhout R.B.
        • Tibboel D.
        • Post M.
        • et al.
        Congenital diaphragmatic hernia: comparison of animal models and relevance to the human situation.
        Neonatology. 2009; 96: 137-149