Advertisement

Perioperative outcomes in minimally-invasive versus open surgery in infants undergoing repair of congenital anomalies

  • Lindsay A. Gil
    Affiliations
    Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Center for Child Health Equity and Outcomes Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA
    Search for articles by this author
  • Lindsey Asti
    Affiliations
    Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Center for Child Health Equity and Outcomes Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA
    Search for articles by this author
  • Jordan C. Apfeld
    Affiliations
    Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Center for Child Health Equity and Outcomes Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA
    Search for articles by this author
  • Yuri V. Sebastião
    Affiliations
    Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Center for Child Health Equity and Outcomes Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Division of Global Women's Health, School of Medicine, University of North Carolina, Chapel Hill, NC 27514, USA
    Search for articles by this author
  • Katherine J. Deans
    Affiliations
    Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Center for Child Health Equity and Outcomes Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA
    Search for articles by this author
  • Peter C. Minneci
    Correspondence
    Corresponding author at: Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA.
    Affiliations
    Center for Surgical Outcomes Research, Abigail Wexner Research Institute and Department of Surgery, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA

    Center for Child Health Equity and Outcomes Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH 43205, USA
    Search for articles by this author

      Highlights

      • Minimally-invasive surgery is becoming progressively more common in the repair of congenital anomalies in the pediatric population.
      • MIS was associated with longer operative time (difference; 95% CI) (16 min; 9–23) and anesthesia time (13 min; 6–21), but less postoperative ventilation days (−1.0 days; −1.4− −0.6) and shorter postoperative length of stay (−1.4 days; −2.4− −0.3).
      • Minimally-invasive repair is associated with improved perioperative outcomes compared to an open approach.

      Abstract

      Background

      This study compared perioperative outcomes among infants undergoing repair of congenital anomalies using minimally invasive (MIS) versus open surgical approaches.

      Methods

      The ACS NSQIP Pediatric (2013–2018) was queried for patients undergoing repair of any of the following 9 congenital anomalies: congenital lung lesion (LL), mediastinal mass (MM), congenital malrotation (CM), anorectal malformation (ARM), Hirschsprung disease (HD), congenital diaphragmatic hernia (CDH), tracheoesophageal fistula (TEF), hepatobiliary anomalies (HB), and intestinal atresia (IA). Inverse probability of treatment weights (IPTW) derived from propensity scores were utilized to estimate risk-adjusted association between surgical approach and 30-day outcomes.

      Results

      12,871 patients undergoing congenital anomaly repair were included (10,343 open; 2528 MIS). After IPTW, MIS was associated with longer operative time (difference; 95% CI) (16 min; 9–23) and anesthesia time (13 min; 6–21), but less postoperative ventilation days (-1.0 days; -1.4- -0.6) and shorter postoperative length of stay (-1.4 days; -2.4- -0.3). MIS repairs had decreased risk of any surgical complication (risk difference: -6.6%; -9.2- -4.0), including hematologic complications (-7.3%; -8.9- -5.8). There was no significant difference in risk of complication when hematologic complications were excluded (RD -2.3% [-4.7%, 0.1%]). There were no significant differences in the risk of unplanned reoperation (0.4%; -1.5–2.2) or unplanned readmission (0.2%; -1.2–1.5).

      Conclusions

      MIS repair of congenital anomalies is associated with improved perioperative outcomes when compared to open. Additional studies are needed to compare long-term functional and disease-specific outcomes.

      Mini-abstract

      In this propensity-weighted multi-institutional analysis of nine congenital anomalies, minimally invasive surgical repair was associated with improved 30-day outcomes when compared to open surgical repair.

      Level of evidence

      III.

      Keywords

      Abbreviations:

      ACS NSQIP Pediatric (the American college of surgeons national surgical quality improvement program pediatric), MIS (minimally invasive surgery), ARM (anorectal malformation), CDH (congenital diaphragmatic hernia), CM (congenital malrotation), HB (hepatobiliary anomalies), HD (Hirschsprung disease), IA (intestinal atresia), LL (congenital lung lesion), MM (mediastinal mass), TEF (tracheoesophageal fistula), RD (risk difference), CI (confidence interval), ASD (absolute standardized difference), IPTW (inverse probability treatment weighting), ASA (American society of anesthesiologists), CPR (cardiopulmonary resuscitation), IVH (intraventricular hemorrhage)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Pediatric Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ponsky T.A.
        • Rothenberg S.S.
        Minimally invasive surgery in infants less than 5 kg: experience of 649 cases.
        Surg Endosc. 2008; 22: 2214-2219https://doi.org/10.1007/s00464-008-0025-7
        • Georgeson K.E.
        • Robertson D.J.
        Minimally invasive surgery in the neonate: review of current evidence.
        Semin Perinatol. 2004; 28: 212-220https://doi.org/10.1053/j.semperi.2004.03.008
        • Blinman T.
        • Ponsky T.
        Pediatric minimally invasive surgery: laparoscopy and thoracoscopy in infants and children.
        Pediatrics. 2012; 130: 539-549https://doi.org/10.1542/peds.2011-2812
        • Jackson H.T.
        • Kane T.D.
        Advances in minimally invasive surgery in pediatric patients.
        Adv Pediatr. 2014; 61: 149-195https://doi.org/10.1016/j.yapd.2014.03.011
        • Apfeld J.C.
        • Sebastiano Y.V.
        • Deans K.J.
        • et al.
        Benchmarking utilization, length of stay, and complications following minimally invasive repair of major congenital anomalies.
        Surg Endosc. 2021; https://doi.org/10.1007/s00464-021-08413-1
        • Mattei P.
        Minimally invasive surgery in the diagnosis and treatment of abdominal pain in children.
        Curr Opin Pediatr. 2007; 19: 338-343https://doi.org/10.1097/mop.0b013e32810c8eaf
        • Nair D.
        • Wells J.M.
        • Cook N.
        • et al.
        Critical design and validation considerations for the development of neonatal minimally invasive surgery simulators.
        J Pediatr Surg. 2019; 54: 2448-2452https://doi.org/10.1016/j.jpedsurg.2019.05.022
        • McCann M.E.
        • Soriano S.G.
        Progress in anesthesia and management of the newborn surgical patient.
        Semin Pediatr Surg. 2014; 23: 244-248https://doi.org/10.1053/j.sempedsurg.2014.09.003
        • Rothenberg S.S.
        Developing neonatal minimally invasive surgery: innovation, techniques, and helping an industry to change.
        J Pediatr Surg. 2015; 50: 232-235https://doi.org/10.1016/j.jpedsurg.2014.11.005
        • Wall J.K.
        • Sinclair T.J.
        • Kethman W.
        • et al.
        Advanced minimal access surgery in infants weighing less than 3 kg: a single center experience.
        J Pediatr Surg. 2018; 53: 503-507https://doi.org/10.1016/j.jpedsurg.2017.05.006
        • Mayer S.
        • Peukert N.
        • Gnatzy R.
        • et al.
        Physiologic changes in a small animal model for neonatal minimally invasive surgery.
        J. Laparoendosc. Adv. Surg. Tech. 2018; 28: 912-917https://doi.org/10.1089/lap.2018.0075
        • Rothenberg S.
        • Bansal S.
        Principles of minimally invasive surgery in children.
        in: Puri P Pediatric surgery. editors. Springer, Berlin, Heidelberg2020: 477-486https://doi.org/10.1007/978-3-662-43588-5_31 (1st ed.)
        • Gillory L.A.
        • Megison M.L.
        • Harmon C.M.
        • et al.
        Laparoscopic surgery in children with congenital heart disease.
        J Pediatr Surg. 2012; 47: 1084-1088https://doi.org/10.1016/j.jpedsurg.2012.03.008
        • Ponsky T.A.
        • Falk G.A.
        Innovations in minimally invasive surgery in children.
        in: Puri P. Pediatric surgery. eds. Springer, Berlin, Heidelberg2017https://doi.org/10.1007/978-3-642-38482-0_32-1
        • Rothenberg S.
        • Bansal S.
        Principles of minimally invasive surgery in children.
        in: Puri P Pediatric surgery. editors. Springer, Berlin, Heidelberg2016https://doi.org/10.1007/978-3-642-38482-0_31-1 (1st ed.)
        • Sidler M.
        • Wong Z.H.
        • Eaton S.
        • et al.
        Insufflation in minimally invasive surgery: is there any advantage in staying low?.
        J Pediatr Surg. 2020; 55: 1356-1362https://doi.org/10.1016/j.jpedsurg.2019.11.026
        • Jackson T.D.
        • Wannares J.J.
        • Lancaster R.T.
        • et al.
        Does speed matter? The impact of operative time on outcome in laparoscopic surgery.
        Surg Endosc. 2011; 25: 2288-2295https://doi.org/10.1007/s00464-010-1550-8
        • Martinez-Ferro M.
        • Esteves E.
        • Laje P.
        Laparoscopic treatment of biliary atresia and choledochal cyst.
        Semin Pediatr Surg. 2005; 14: 206-215https://doi.org/10.1053/j.sempedsurg.2005.06.003
        • Kay S.
        • Yoder S.
        • Rothenberg S.
        Laparoscopic duodenoduodenostomy in the neonate.
        J Pediatr Surg. 2009; 44: 906-908https://doi.org/10.1016/j.jpedsurg.2009.01.025
        • Guner Y.S.
        • Chokshi N.
        • Aranda A.
        • et al.
        Thoracoscopic repair of neonatal diaphragmatic hernia.
        J Laparoendosc Adv Surg Tech. 2008; 18: 875-880https://doi.org/10.1089/lap.2007.0239
        • Albanese C.T.
        • Sydorak R.M.
        • Tsao K.
        • et al.
        Thoracoscopic lobectomy for prenatally diagnosed lung lesions.
        J Pediatr Surg. 2003; 38: 553-555https://doi.org/10.1053/jpsu.2003.50120
        • Partrick D.A.
        • Rothenberg S.S.
        Thoracoscopic resection of mediastinal masses in infants and children: an evaluation of technique and results.
        J Pediatr Surg. 2001; 36: 1165-1167https://doi.org/10.1053/jpsu.2001.25740
        • Georgeson K.E.
        • Robertson D.J.
        Laparoscopic-assisted approaches for the definitive surgery for Hirschsprung's disease.
        Semin Pediatr Surg. 2004; 13: 256-262https://doi.org/10.1053/j.sempedsurg.2004.10.013
        • Bass K.D.
        • Rothenberg S.S.
        • Chang J.H.T.
        Laparoscopic Ladd's procedure in infants with malrotation.
        J Pediatr Surg. 1998; 33: 279-281https://doi.org/10.1016/s0022-3468(98)90447-x
        • Bischoff A.
        • Martinez-Leo B.
        • Peña A.
        Laparoscopic approach in the management of anorectal malformations.
        Pediatr Surg Int. 2015; 31: 431-437https://doi.org/10.1007/s00383-015-3687-y
        • Margonis G.A.
        • Spolverato G.
        • Kim Y.
        • et al.
        Minimally invasive resection of choledochal cyst: a feasible and safe surgical option.
        J Gastrointest Surg. 2015; 19: 858-865https://doi.org/10.1007/s11605-014-2722-y
        • Rothenberg S.S.
        Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula in neonates, first decade's experience.
        Dis Esophagus. 2013; 26: 359-364https://doi.org/10.1111/dote.12054
        • Cairo S.B.
        • Harmon C.M.
        • Rothstein D.H.
        Minimally invasive surgical exposure among US and Canadian pediatric surgery trainees, 2004-2016.
        J Surg Res. 2018; 231: 179-185https://doi.org/10.1016/j.jss.2018.05.053
        • Gause C.D.
        • Hsiung G.
        • Schwab B.
        • et al.
        Advances in pediatric surgical education: a critical appraisal of two consecutive minimally invasive pediatric surgery training courses.
        J Laparoendosc Adv Surg Tech. 2016; 26: 663-670https://doi.org/10.1089/lap.2016.0249
        • Oomen M.W.N.
        • Hoekstra L.T.
        • Bakx R.
        • et al.
        Learning curves for pediatric laparoscopy: how many operations are enough? The Amsterdam experience with laparoscopic pyloromyotomy.
        Surg Endosc. 2010; 24: 1829-1833https://doi.org/10.1007/s00464-010-0880-x
        • Macdonald A.L.
        • Haddad M.
        • Clarke S.A.
        Learning curves in pediatric minimally invasive surgery: a systematic review of the literature and a framework for reporting.
        J Laparoendosc Adv Surg Tech. 2016; 26: 652-659https://doi.org/10.1089/lap.2016.0193
        • Harrysson I.J.
        • Cook J.
        • Sirimanna P.
        • et al.
        Systematic review of learning curves for minimally invasive abdominal surgery.
        Ann Surg. 2014; 260: 37-45https://doi.org/10.1097/sla.0000000000000596
        • Kuebler J.F.
        • Ure B.M.
        Minimally invasive surgery in the neonate.
        Semin Fetal Neonatal Med. 2011; 16: 151-156https://doi.org/10.1016/j.siny.2011.03.001
        • Qin J.
        • Ren Y.
        • Ma D.
        A comparative study of thoracoscopic and open surgery of congenital diaphragmatic hernia in neonates.
        J Cardiothorac Surg. 2019; 14https://doi.org/10.1186/s13019-019-0938-3
        • Lansdale N.
        • Alam S.
        • Losty P.D.
        • et al.
        Neonatal endosurgical congenital diaphragmatic hernia repair.
        Ann Surg. 2010; 252: 20-26https://doi.org/10.1097/sla.0b013e3181dca0e8
        • Chen Y.
        • Nah S.A.
        • Laksmi N.K.
        • et al.
        Transanal endorectal pull-through versus transabdominal approach for Hirschsprung's disease: a systematic review and meta-analysis.
        J Pediatr Surg. 2013; 48: 642-651https://doi.org/10.1016/j.jpedsurg.2012.12.036
        • Way C.
        • Wayne C.
        • Grandpierre V.
        • et al.
        Thoracoscopy vs. thoracotomy for the repair of esophageal atresia and tracheoesophageal fistula: a systematic review and meta-analysis.
        Pediatr Surg Int. 2019; https://doi.org/10.1007/s00383-019-04527-9
        • Mentessidou A.
        • Saxena A.K.
        Laparoscopic repair of duodenal atresia: systematic review and meta-analysis.
        World J Surg. 2017; 41: 2178-2184https://doi.org/10.1007/s00268-017-3937-3
        • Catania V.D.
        • Lauriti G.
        • Pierro A.
        • et al.
        Open versus laparoscopic approach for intestinal malrotation in infants and children: a systematic review and meta-analysis.
        Pediatr Surg Int. 2016; 32: 1157-1164https://doi.org/10.1007/s00383-016-3974-2
        • Nasr A.
        • Bass J.
        Thoracoscopic vs open resection of congenital lung lesions: a meta-analysis.
        J Pediatr Surg. 2012; 47: 857-861https://doi.org/10.1016/j.jpedsurg.2012.01.036
        • Hussain M.H.
        • Alizai N.
        • Patel B.
        Outcomes of laparoscopic Kasai portoenterostomy for biliary atresia: a systematic review.
        J Pediatr Surg. 2017; 52: 264-267https://doi.org/10.1016/j.jpedsurg.2016.11.022
        • Han Y.
        • Xia Z.
        • Guo S.
        • et al.
        Laparoscopically assisted anorectal pull-through versus posterior sagittal anorectoplasty for high and intermediate anorectal malformations: a systematic review and meta-analysis.
        PLoS One. 2017; 12e0170421https://doi.org/10.1371/journal.pone.0170421
        • Sathya C.
        • Wayne C.
        • Gotsch A.
        • et al.
        Laparoscopic versus open pyloromyotomy in infants: a systematic review and meta-analysis.
        Pediatr Surg Int. 2017; 33: 325-333https://doi.org/10.1007/s00383-016-4030-y
        • Jia W.Q.
        • Tian J.H.
        • Yang K.H.
        • et al.
        Open versus laparoscopic pyloromyotomy for pyloric stenosis: a meta-analysis of randomized controlled trials.
        Eur J Pediatr Surg. 2011; 21: 77-81https://doi.org/10.1055/s-0030-1261926
        • Raval M.V.
        • Dillon P.W.
        • Bruny J.L.
        • et al.
        American college of surgeons national surgical quality improvement program pediatric: a phase 1 report.
        J Am Coll Surg. 2011; 212: 1-11https://doi.org/10.1016/j.jamcollsurg.2010.08.013
        • Bruny J.L.
        • Hall B.L.
        • Barnhart D.C.
        • et al.
        American college of surgeons national surgical quality improvement program pediatric: a beta phase report.
        J Pediatr Surg. 2013; 48: 74-80https://doi.org/10.1016/j.jpedsurg.2012.10.019
        • Austin P.C.
        An introduction to propensity score methods for reducing the effects of confounding in observational studies.
        Multivar Behav Res. 2011; 46: 399-424https://doi.org/10.1080/00273171.2011.568786
        • Austin P.C.
        • Stuart E.A.
        Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.
        Stat Med. 2015; 34: 3661-3679https://doi.org/10.1002/sim.6607
        • Robins J.M.
        • Hernán M.Á.
        • Brumback B.
        Marginal structural models and causal inference in epidemiology.
        Epidemiology. 2000; 11: 550-560https://doi.org/10.1097/00001648-200009000-00011
        • Stürmer T.
        • Wyss R.
        • Glynn R.J.
        • et al.
        Propensity scores for confounder adjustment when assessing the effects of medical interventions using nonexperimental study designs.
        J Intern Med. 2014; 275: 570-580https://doi.org/10.1111/joim.12197
        • SAS/STAT
        14.2 user's guide: the psmatch procedure.
        SAS Institute Inc., Cary, NC2016
        • Stuart E.A.
        Matching methods for causal inference: a review and a look forward.
        Stat Sci. 2010; 25: 1-21
        • SAS Institute Inc
        SAS/STAT 14.2 user's guide.
        SAS Institute Inc, Cary, NC2016
        • Eker H.H.
        • Hansson B.M.E.
        • Buunen M.
        • et al.
        Laparoscopic vs open incisional hernia repair.
        JAMA Surg. 2013; 148: 259https://doi.org/10.1001/jamasurg.2013.1466
        • Arts S.
        • Delye H.
        • Van Lindert E.J.
        Intraoperative and postoperative complications in the surgical treatment of craniosynostosis: minimally invasive versus open surgical procedures.
        J Neurosurg Pediatr. 2018; 21: 112-118https://doi.org/10.3171/2017.7.peds17155
        • Jaschinski T.
        • Mosch C.G.
        • Eikermann M.
        • et al.
        Laparoscopic versus open surgery for suspected appendicitis.
        Cochrane Database Syst Rev. 2018; https://doi.org/10.1002/14651858.CD001546.pub4
        • Tejwani R.
        • Young B.J.
        • Wang H.H.S.
        • et al.
        Open versus minimally invasive surgical approaches in pediatric urology: trends in utilization and complications.
        J Pediatr Urol. 2017; 13 (e1-.e9): 283https://doi.org/10.1016/j.jpurol.2017.01.013
        • Crawshaw B.P.
        • Chien H.L.
        • Augestad K.M.
        • et al.
        Effect of laparoscopic surgery on health care utilization and costs in patients who undergo colectomy.
        JAMA Surg. 2015; 150: 410https://doi.org/10.1001/jamasurg.2014.3171
        • Lei Q.C.
        • Wang X.Y.
        • Zheng H.Z.
        • et al.
        Laparoscopic versus open colorectal resection within fast track programs: an update meta-analysis based on randomized controlled trials.
        J Clin Med Res. 2015; 7: 594-601https://doi.org/10.14740/jocmr2177w
        • Novitsky Y.W.
        • Litwin D.E.M.
        • Callery M.P.
        The net immunologic advantage of laparoscopic surgery.
        Surg Endosc. 2004; 18: 1411-1419https://doi.org/10.1007/s00464-003-8275-x
        • Shabanzadeh D.M.
        • Sørensen L.T.
        Laparoscopic surgery compared with open surgery decreases surgical site infection in obese patients: a systematic review and meta-analysis.
        Ann Surg. 2012; 256: 934-945https://doi.org/10.1097/SLA.0b013e318269a46b
        • Ahmad G.
        • Baker J.
        • Finnerty J.
        • et al.
        Laparoscopic entry techniques.
        Cochrane Database Syst Rev. 2019; 1Cd006583https://doi.org/10.1002/14651858.CD006583.pub5
        • Fan C.J.
        • Chien H.L.
        • Weiss M.J.
        • et al.
        Minimally invasive versus open surgery in the medicare population: a comparison of post-operative and economic outcomes.
        Surg Endosc. 2018; 32: 3874-3880https://doi.org/10.1007/s00464-018-6126-z
        • Ielpo B.
        • Nuñez-Alfonsel J.
        • Duran H.
        • et al.
        Cost-effectiveness of randomized study of laparoscopic versus open bilateral inguinal hernia repair.
        Ann Surg. 2018; 268: 725-730https://doi.org/10.1097/sla.0000000000002894
        • Apfeld J.C.
        • Kastenberg Z.J.
        • Gibbons A.T.
        • et al.
        The disproportionate cost of operation and congenital anomalies in infancy.
        Surgery. 2019; 165: 1234-1242https://doi.org/10.1016/j.surg.2018.12.022
        • Huntington J.T.
        • Lopez J.J.
        • Mahida J.B.
        • et al.
        Comparing laparoscopic versus open Ladd's procedure in pediatric patients.
        J Pediatr Surg. 2017; 52: 1128-1131https://doi.org/10.1016/j.jpedsurg.2016.10.046
        • Varda B.K.
        • Johnson E.K.
        • Clark C.
        • et al.
        National trends of perioperative outcomes and costs for open, laparoscopic and robotic pediatric pyeloplasty.
        J Urol. 2014; 191: 1090-1096https://doi.org/10.1016/j.juro.2013.10.077
        • Kethman W.C.
        • Harris A.H.S.
        • Hawn M.T.
        • et al.
        Trends and surgical outcomes of laparoscopic versus open pyloromyotomy.
        Surg Endosc. 2018; 32: 3380-3385https://doi.org/10.1007/s00464-018-6060-0
        • Zitsman J.L.
        Pediatric minimal-access surgery: update 2006.
        Pediatrics. 2006; 118: 304-308https://doi.org/10.1542/peds.2005-2736
        • Svetanoff W.J.
        • Sobrino J.A.
        • Sujka J.A.
        • et al.
        Laparoscopic ladd procedure for the management of malrotation and volvulus.
        J Laparoendosc Adv Surg Tech. 2020; 30: 210-215https://doi.org/10.1089/lap.2019.0602
        • Ranganathan P.
        • Pramesh C.S.
        • Aggarwal R.
        Common pitfalls in statistical analysis: logistic regression.
        Perspect Clin Res. 2017; 8: 148-151https://doi.org/10.4103/picr.PICR_87_17
        • Tolles J.
        • Meurer W.J.
        Logistic regression.
        JAMA. 2016; 316: 533https://doi.org/10.1001/jama.2016.7653
        • Stone C.A.
        • Tang Y.
        Comparing propensity score methods in balancing covariates and recovering impact in small sample educational program evaluations.
        Pract Assess Res Eval. 2013; 18: 13https://doi.org/10.7275/qkqa-9k50
        • Williamson E.
        • Morley R.
        • Lucas A.
        • et al.
        Propensity scores: from naïve enthusiasm to intuitive understanding.
        Stat Methods Med Res. 2012; 21: 273-293https://doi.org/10.1177/0962280210394483
      1. Smolle M.A., Tunn P.U., Goldenitsch E., et al. The prognostic impact of unplanned excisions in a cohort of 728 Soft tissue sarcoma patients: a multicentre study. 2017. doi: 10.1245/s10434-017-5776-8

        • Ezekian B.
        • Englum B.R.
        • Gulack B.C.
        • et al.
        Comparing oncologic outcomes after minimally invasive and open surgery for pediatric neuroblastoma and Wilms tumor.
        Pediatr Blood Cancer. 2018; 65: e26755https://doi.org/10.1002/pbc.26755
        • Lu M.
        • Luketich J.D.
        • Levy R.M.
        • et al.
        Anastomotic complications after esophagectomy: influence of omentoplasty in propensity-weighted cohorts.
        J Thorac Cardiovasc Surg. 2020; 159: 2096-2105https://doi.org/10.1016/j.jtcvs.2019.09.157
        • Sulkowski J.P.
        • Cooper J.N.
        • Congeni A.
        • et al.
        Single-stage versus multi-stage pull-through for Hirschsprung's disease: practice trends and outcomes in infants.
        J Pediatr Surg. 2014; 49: 1619-1625https://doi.org/10.1016/j.jpedsurg.2014.06.002
        • Chu D.I.
        • Tan J.M.
        • Mattei P.
        • et al.
        Mortality and morbidity after laparoscopic surgery in children with and without congenital heart disease.
        J Pediatr. 2017; 185 (e3): 88-93https://doi.org/10.1016/j.jpeds.2017.02.011
        • Wright J.D.
        • Chen L.
        • Jorge S.
        • et al.
        Prescription of extended-duration thromboprophylaxis after high-risk, abdominopelvic cancer surgery.
        Gynecol Oncol. 2016; 141: 531-537https://doi.org/10.1016/j.ygyno.2016.03.023
        • Lawrence A.E.
        • Minneci P.C.
        • Deans K.J.
        • et al.
        Relationships between hospital and surgeon operative volumes and outcomes of esophageal atresia/tracheoesophageal fistula repair.
        J Pediatr Surg. 2019; 54: 44-49https://doi.org/10.1016/j.jpedsurg.2018.10.037
        • Chu D.I.
        • Shrivastava D.
        • Van Batavia J.P.
        • et al.
        Outcomes of externalized pyeloureteral versus internal ureteral stent in pediatric robotic-assisted laparoscopic pyeloplasty.
        J Pediatr Urol. 2018; 14 (e1-.e6): 450https://doi.org/10.1016/j.jpurol.2018.04.012
        • Lally K.P.
        • Lally P.A
        • Lally R.E.
        • Tibboel D.
        • Jaksic T.
        • Wilson J.M.
        • et al.
        • Congenital Diaphragmatic Hernia Study Group
        Defect size determines survival in infants with congenital diaphragmatic hernia.
        Pediatrics. 2007; 120: e651-e6e7https://doi.org/10.1542/peds.2006-3040
        • Oluyomi-Obi T.
        • Kuret V.
        • Puligandla P.
        • et al.
        Antenatal predictors of outcome in prenatally diagnosed congenital diaphragmatic hernia (CDH).
        J Pediatr Surg. 2017; 52: 881-888https://doi.org/10.1016/j.jpedsurg.2016.12.008
        • Holcomb Iii G.W.
        • Rothenberg S.S.
        • Bax K.M.A.
        • et al.
        Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula: a multi-institutional analysis.
        Ann Surg. 2005; 242: 422-430https://doi.org/10.1097/01.sla.0000179649.15576.db
        • Pinheiro P.F.M.
        Current knowledge on esophageal atresia.
        World J Gastroenterol. 2012; 18: 3662https://doi.org/10.3748/wjg.v18.i28.3662
        • Castilloux J.
        • Noble A.J.
        • Faure C.
        Risk factors for short- and long-term morbidity in children with esophageal atresia.
        J Pediatr. 2010; 156: 755-760https://doi.org/10.1016/j.jpeds.2009.11.038
        • Gross R.E.
        The surgery of infancy and childhood.
        WB Saunders, Philadelphia1953
        • Montalva L.
        • Lauriti G.
        • Zani A.
        Congenital heart disease associated with congenital diaphragmatic hernia: a systematic review on incidence, prenatal diagnosis, management, and outcome.
        J Pediatr Surg. 2019; 54: 909-919https://doi.org/10.1016/j.jpedsurg.2019.01.018
        • Lupo P.J.
        • Isenburg J.L.
        • Salemi J.L.
        • et al.
        Population-based birth defects data in the United States, 2010-2014: a focus on gastrointestinal defects.
        Birth Defects Res. 2017; 109: 1504-1514https://doi.org/10.1002/bdr2.1145
        • Lautz T.B.
        • Mandelia A.
        • Radhakrishnan J.
        VACTERL associations in children undergoing surgery for esophageal atresia and anorectal malformations: implications for pediatric surgeons.
        J Pediatr Surg. 2015; 50: 1245-1250https://doi.org/10.1016/j.jpedsurg.2015.02.049
        • Apfeld J.C.
        • Kastenberg Z.J.
        • Sylvester K.G.
        • et al.
        The effect of level of care on gastroschisis outcomes.
        J Pediatr. 2017; 190 (e1): 79-84https://doi.org/10.1016/j.jpeds.2017.07.008
        • Apfeld J.C.
        • Kastenberg Z.J.
        • Gibbons A.T.
        • et al.
        Treating center volume and congenital diaphragmatic hernia outcomes in California.
        J Pediatr. 2020; https://doi.org/10.1016/j.jpeds.2020.03.028
        • Ijsselstijn H.
        • Gischler S.J.
        • Wijnen R.M.H.
        • et al.
        Assessment and significance of long-term outcomes in pediatric surgery.
        Semin Pediatr Surg. 2017; 26: 281-285https://doi.org/10.1053/j.sempedsurg.2017.09.004
        • Davenport M.
        • Rothenberg S.S.
        • Crabbe D.C.G.
        • et al.
        The great debate: open or thoracoscopic repair for oesophageal atresia or diaphragmatic hernia.
        J Pediatr Surg. 2015; 50: 240-246https://doi.org/10.1016/j.jpedsurg.2014.11.008
        • Schukfeh N.
        • Kuebler J.
        • Dingemann J.
        • et al.
        Thirty years of minimally invasive surgery in children: analysis of meta-analyses.
        Eur J Pediatr Surg. 2019; https://doi.org/10.1055/s-0039-1687901
        • Dimick J.B.
        • Osborne N.H.
        • Hall B.L.
        • et al.
        Risk adjustment for comparing hospital quality with surgery: how many variables are needed?.
        J Am Coll Surg. 2010; 210: 503-508https://doi.org/10.1016/j.jamcollsurg.2010.01.018
        • Bohl D.D.
        • Russo G.S.
        • Basques B.A.
        • et al.
        Variations in data collection methods between national databases affect study results.
        J Bone Jt Surg. 2014; 96: e193https://doi.org/10.2106/jbjs.m.01490
        • Epelboym I.
        • Gawlas I.
        • Lee J.A.
        • et al.
        Limitations of ACS-NSQIP in reporting complications for patients undergoing pancreatectomy: underscoring the need for a pancreas-specific module.
        World J Surg. 2014; 38: 1461-1467https://doi.org/10.1007/s00268-013-2439-1
        • Ivanovic J.
        • Seely A.J.E.
        • Anstee C.
        • et al.
        Measuring surgical quality: comparison of postoperative adverse events with the American college of surgeons NSQIP and the thoracic morbidity and mortality classification system.
        J Am Coll Surg. 2014; 218: 1024-1031https://doi.org/10.1016/j.jamcollsurg.2013.12.043
      2. American College of Surgeons. ACS NSQIP pediatric: participants. Available at: https://www.facs.org/search/nsqip-pediatric-participants?allresults= (2020), Accessed 21st May 2020.